Senin, 15 Maret 2010

momen inersia 2

Lingkaran tipis dengan jari-jari R dan bermassa M (sumbu rotasi terletak pada pusat)

momen-inersia-1

Lingkaran tipis ini mirip seperti cincin tapi cincin lebih tebal. Jadi semua partikel yang menyusun lingkaran tipis berada pada jarak r dari sumbu rotasi. Momen inersia lingkaran tipis ini sama dengan jumlah total momen inersia semua partikel yang tersebar di seluruh bagian lingkaran tipis.

Momen Inersia lingkaran tipis yang berotasi seperti tampak pada gambar di atas, bisa diturunkan sebagai berikut :

momen-inersia-1b

Perhatikan gambar di atas. Setiap partikel pada lingkaran tipis berada pada jarak r dari sumbu rotasi. dengan demikian : r1 = r2 = r3 = r4 = r5 = r6 = R

I = MR2

Ini persamaan momen inersia-nya.

Cincin tipis berjari-jari R,

bermassa M dan lebar L (sumbu rotasi terletak di tengah-tengah salah satu diameter)

momen-inersia-2amomen-inersia-2b

Cincin tipis berjari-jari R, bermassa M dan lebar L

(sumbu rotasi terletak pada salah satu garis singgung)

momen-inersia-3amomen-inersia-3b

Silinder berongga,

dengan jari-jari dalam R2 dan jari-jari luar R1

momen-inersia-4amomen-inersia-5b

Silinder padat

dengan jari-jari R (sumbu rotasi terletak pada sumbu silinder)

momen-inersia-5a

momen-inersia-4b

Silinder padat dengan jari-jari R

(sumbu rotasi terletak pada diameter pusat)

momen-inersia-6amomen-inersia-6b

Bola pejal dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-7amomen-inersia-7b

Kulit Bola dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-8amomen-inersia-8b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada pusat )

momen-inersia-9amomen-inersia-9b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada salah satu ujung)

momen-inersia-10amomen-inersia-10b

Balok pejal yang panjangnya P dan lebarnya L

(sumbu rotasi terletak pada pusat; tegak lurus permukaan)

momen-inersia-11amomen-inersia-11b


Tidak ada komentar:

Poskan Komentar